Modulation of North Pacific Tropical Cyclone Activity by Three Phases of ENSO
نویسندگان
چکیده
Tropical Pacific Ocean warming has been separated into two modes based on the spatial distribution of the maximum sea surface temperature (SST) anomaly: an east Pacific warming (EPW) and a central Pacific warming (CPW). When combined with east Pacific cooling (EPC), these three regimes are shown to have different impacts on tropical cyclone (TC) activity over the North Pacific by differential modulation of both local thermodynamic factors and large-scale circulation patterns. In EPW years, the genesis and the track density of TCs tend to be enhanced over the southeastern part and suppressed in the northwestern part of the western Pacific by strong westerly wind shear. The extension of the monsoon trough and the weak wind shear over the central Pacific increases the likelihood of TC activity to the east of the climatological mean TC genesis location. In CPW years, the TC activity is shifted to the west and is extended through the northwestern part of the western Pacific. The westward shifting of CPW-induced heating moves the anomalous westerly wind and monsoon trough through the northwestern part of the western Pacific and provides a more favorable condition for TC landfall. The CPW, on the other hand, produces a large suppression of TC activity in the eastern Pacific basin. In EPC years, all of the variables investigated show almost a mirror image of the EPW.
منابع مشابه
Western North Pacific Tropical Cyclone Intensity and ENSO
The influence of the El Niño–Southern Oscillation (ENSO) on tropical cyclone intensity in the western North Pacific basin is examined. Accumulated cyclone energy (ACE), constructed from the best-track dataset for the region for the period 1950–2002, and other related variables are analyzed. ACE is positively correlated with ENSO indices. This and other statistics of the interannually varying tr...
متن کاملEl Niño-Southern Oscillation, the Madden-Julian Oscillation and Atlantic basin tropical cyclone rapid intensification
[1] Both El Niño-Southern Oscillation (ENSO) and the Madden-Julian Oscillation (MJO) have previously been documented to impact Atlantic basin tropical cyclone (TC) activity through alterations in large-scale fields such as vertical wind shear, mid-level moisture, sea level pressure and sea surface temperature. Atlantic TC activity has been shown to be enhanced when La Niña conditions are presen...
متن کاملNorthern Hemisphere tropical cyclone activity
[1] Recent historical Northern Hemisphere (NH) tropical cyclone (TC) inactivity is compared with strikingly large observed variability during the past three decades. Yearly totals of the combined active-basin NH accumulated cyclone energy (ACE) are highly correlated with boreal spring seasurface temperature (SST) in the North Pacific Ocean and are representative of an evolving dual-gyre, trans-...
متن کاملCluster analysis of tropical cyclone tracks in the Southern Hemisphere
A probabilistic clustering method is used to describe various aspects of tropical cyclone (TC) tracks in the Southern Hemisphere, for the period 1969–2008. A total of 7 clusters are examined: three in the South Indian Ocean, three in the Australian Region, and one in the South Pacific Ocean. Large-scale environmental variables related to TC genesis in each cluster are explored, including sea su...
متن کاملThe seasonally-varying influence of ENSO on rainfall and tropical cyclone activity in the Philippines
An observational study covering the period 1950–2002 examines a seasonal reversal in the ENSO rainfall signal in the north-central Philippines. In boreal Summer of El Niño (La Niña) events, above (below) average rainfall typically occurs in this area. Rainfall anomalies of opposite sign develop across the country in the subsequent fall. This study investigates the seasonal evolution of the anom...
متن کامل